Gerçel sayılar (Reel sayılar kümesi) NEDİR KONU ANLATIMI ÖRNEKLİ

Gerçel sayılar (Reel sayılar kümesi) NEDİR KONU ANLATIMI ÖRNEKLİ

Gerçel sayılar

Matematikte Gerçel sayılar (ya da gerçek ya da reel sayılar) kümesi, oranlı sayılar (rasyonel sayılar) kümesinin standart metriğe göre bütünlenmesiyle elde edilen kümedir. Reel sayılar kümesi mathbb{R} sembolüyle gösterilir.

Her oranlı sayı (rasyonel sayı) bir gerçel sayıdır; virgülden sonra bloklar halinde tekrar eden ondalık açılımı vardır (0 dahil). Örneğin:

frac{1}{4}=0,2500000....

veya

frac{1}{3}=0,3333333....

veya

frac{15}{13}=1,153846153846153846....

eşitliklerinde olduğu gibi. Burada dikkat edilmesi gereken, ondalık basamaklardaki rakamların bir süre sonra bloklar halinde periyodik tekrar etme özelliğidir. Bu şöyle ispatlanabilir: m, n iki tamsayı (n pozitif) olsun. m/n oranlı sayısı ondalık ifade edilmek istendiğinde, m 'yi n 'ye bölerken (bölme algoritmasını uygularken) ilk adımda kalan 0 ile n arasında olacaktır. Kalanın yanına sıfırlar ekleyip bölmeye devam edilecek ve bir sonraki adımda kalan yine 0 ile n arasında olacaktır. Sonsuz adımda sonlu sayıda değer alabilen kalanlar, bir süre sonra aynı değeri alacak ve kendini tekrar edecektir.

Oranlı sayılardan gerçel sayıları elde etme işlemiyse oranlı sayılara ondalık açılımındaki rakamların devirsel tekrar etmediği sayıların eklenmesi olarak düşünülebilir. Bu tür sonradan elde ettiğimiz gerçel sayılara irrasyonel sayılar denir.

Konu başlıkları [gizle]
<_script /> //<_script />

 

İrrasyonel sayıların varlığı [değiştir]

Düzlemde herhangi bir doğru parçası alıp buna birim uzunluk diyelim. Tamsayılarla bu doğru parçasının katları birebir eşlensin. Alınan bir doğrunun üzerinde bu tamsayı uzunlukları ve olası tüm oranları (oranlı sayılar) işaretlensin. Gösterilebilir ki, herhangi iki oranlı sayı arasında sonsuz çoklukta oranlı sayı vardır. Demek oluyor ki, alınan doğru üzerinde birbirlerine istenildiği kadar yakın ve oranlı sayıları temsil eden iki nokta (oranlı nokta) arasında , sonsuz çoklukta oranlı nokta vardır.

Bu tür noktaların, dolayısıyla uzunlukların varlığını ispatlamak için, kenar uzunluğu 1 birim olan bir karenin köşegen uzunluğunu (x) sayı doğrusu üzerinde işaretleyelim. x uzunluğu, oranlı bir sayı değildir, yani p ve q birer tamsayı olmak üzere p/q şeklinde gösterilemeyen bir sayıdır; bu sayı sqrt{2} olarak gösterilecektir.

Kabul edelim ki x=p/q olsun. Bundan başka, bu kesrin artık kısaltılamayan bir kesir olduğunu farz edelim, yani p ve q aralarında asal olsunlar. Başka bir deyişle, bunların 1'den başka ortak bölenleri bulunmasın. Pisagor teoremi sayesinde x2=2=p2/q2 elde edilir. Dolayısıyla 2q2=p2 olur. p ve q aralarında asal olduğu için 2, p 'yi bölmek zorundadır. Böylece eşitliğin sağ tarafı 4'e bölünür. Sol tarafının da dörde bölünmesi gerekeceğinden q da 2'ye bölünmek zorunda kalır. Hem p hem de q sayıları 2'ye bölünebiliyorsa, aralarında asallık kabulüyle çelişkili bir sonuç bulunmuş olur. O halde x 'in oranlı bir sayı olduğu kabulünden vazgeçmek gerekecektir.

Bu ispat, bir Pisagorcu olan Hippasus'a atfedilmektedir (İ.Ö: 5. yüzyıl). İrrasyonel sayıların varlığının ilk antik Yunan matematikçi Pisagor'un okulu tarafından anlaşılmış olduğu görüşü yaygındır. Fakat Pisagor bu sayıların evrenin düzenine aykırı olduğunu düşünmüş ve öğrencilerine bu sayıların varlığını açıklamayı yasaklamıştır. Rivayete göre Hippasus'u o öldürtmüştür.

--85.96.190.53 11:55, 6 Ocak 2010 (UTC)== ŞEHMUZ KAYGUNUN YAZIZI ==--85.96.190.53 11:55, 6 Ocak 2010 (UTC)

Gerçel sayıların kurulması [değiştir]

Gerçel Sayılar ile oranlı sayılar kümesinin birleşimi Gerçel sayılar kümesini oluşturur. Bu kümeye reel sayılar veya gerçel sayılar da denir. Geometride karşılaşılan bazı büyüklüklerin anlamlandırılabilmesi için Klasik Yunan Dönemi'nde, yaygın inanca göre Pisagor ve öğrencileri tarafından sayı kavramına dâhil edilmişlerdir. Anlatılanlara göre Pisagor doğadaki tüm büyüklüklerin rasyonel sayılarla ifade edilebileceğini söylemekteydi. Fakat bulduğu hipotenüs eşitliğinin bir sonucu olarak x2 = 2 gibi bir değerlerle karşılaştı. Uzun yıllar boyu bu tür sayıların uzun kesirlerle ifade edilebileceğini iddia etti ve göstermeye çalıştıysa da, öğrencilerinden birinin bu gibi sayıların kesinlikle kesirli bir biçimde gösterilemeyeceğini ispat etmesiyle ikna olur ama hayatı boyu bunun bir sır gibi gizlenmesi için çalışır ve doğada gerçel sayıların yeri olmadığını söylemeye devam eder. Gerçel sayılar kümesi harfi ile ifade edilir. İrrasyonel sayılar kümesi ile rasyonel sayılar kümesinin birleşimi reel sayıları oluşturur. Bu kümeye 'gerçel' veya 'gerçek' sayılar da denir. Geometride karşılaşılan bazı büyüklüklerin anlamlandırılabilmesi için Klasik Yunan Dönemi'nde, yaygın inanca göre Pisagor ve öğrencileri tarafından sayı kavramına dahil edilmişlerdir.

Cauchy dizileriyle inşa [değiştir] Dedekind kesimleriyle inşa [değiştir] Tamsayılar grubunu kullanarak inşa [değiştir] Bazı Yan Bilgiler [değiştir]
  • Tam kare olmayan hiçbir doğal sayının karekökü oranlı değildir.
  • Oranlı sayılar kümesi sayılabilir olmasına karşılık gerçel sayılar kümesi sayılamazdır.
  • Gerçel sayılar "cebirsel sayılar" ve "aşkın sayılar" (transcendental) olarak ikiye ayrılırlar. Cebirsel bir gerçel sayı, tamsayı katsayılı bir polinomun kökü olabilen bir sayıdır; örneğin: x2 - 2 polinomunu 0 yapan değerlerden biri (kök) sqrt{2}'dir. x - 2 polinomunun kökü 2'dir. Dolayısıyla sqrt{2} ve 2 cebirsel sayılardır. Ancak π ve e sayıları herhangi bir polinomun kökü olamazlar; bunlar aşkın sayılardır.
İspat [değiştir]

Doğal sayıları için nx≤y dir. Bu durumda y/x, N doğal sayılar kümesi için bir üst sınırdır. Böylece N, R nin boş olmayan bir altkümesi olup üstten sınırlıdır ve en küçük üst sınır özelliğinden bir s supremuma (e.k.ü.s.'e) sahiptir. s-1< s olduğundan s-1, N için bir üst sınır olamaz. Bu yüzden, N 'nin s-1 den büyük olan bir n elemanı var olmalıdır. Ancak eğer n>s-1 ise n+1>solur. Bu da s 'nin N nin supremumu olması ile çelişir. Bu da bizi varsayımımızın karşıtına götürür. Yani her bir n için n<=x olamaz.

Yorum Yaz
-->